Nabla discrete fractional calculus and nabla inequalities

نویسنده

  • George A. Anastassiou
چکیده

Here we define a Caputo like discrete nabla fractional difference and we produce discrete nabla fractional Taylor formulae for the first time. We estimate their remaiders. Then we derive related discrete nabla fractional Opial, Ostrowski, Poincaré and Sobolev type inequalities .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Mittag-Leffler functions of fractional nabla calculus

In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.

متن کامل

Gronwall's inequality on discrete fractional calculus

We introduce discrete fractional sum equations and inequalities. We obtain the equivalence of an initial value problem for a discrete fractional equation and a discrete fractional sum equation. Then we give an explicit solution to the linear discrete fractional sum equation. This allows us to state and prove an analogue of Gronwall's inequality on discrete fractional calculus. We employ a nabla...

متن کامل

The Delta - Nabla Calculus of Variations

The discrete-time, the quantum, and the continuous calculus of variations have been recently unified and extended. Two approaches are followed in the literature: one dealing with minimization of delta integrals; the other dealing with minimization of nabla integrals. Here we propose a more general approach to the calculus of variations on time scales that allows to obtain both delta and nabla r...

متن کامل

The Variational Calculus on Time Scales

Abstract. The discrete, the quantum, and the continuous calculus of variations, have been recently unified and extended by using the theory of time scales. Such unification and extension is, however, not unique, and two approaches are followed in the literature: one dealing with minimization of delta integrals; the other dealing with minimization of nabla integrals. Here we review a more genera...

متن کامل

Henstock–Kurzweil delta and nabla integrals

We will study the Henstock–Kurzweil delta and nabla integrals, which generalize the Henstock–Kurzweil integral. Many properties of these integrals will be obtained. These results will enable time scale researchers to study more general dynamic equations. The Hensock–Kurzweil delta (nabla) integral contains the Riemann delta (nabla) and Lebesque delta (nabla) integrals as special cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2010